Department of Mathematical and Computational Sciences
 National Institute of Technology Karnataka, Surathkal

Numerical Methods - MA 207
Numerical Solutions of Ordinary Differential Equations

1. Apply Euler method to the following ivp choosing $h=0.2 \cdot y^{\prime}=x+y, y(0)=0$. Compute $y(0.2)$ and improve the solution by applying Euler modified method.
2. Given $y^{\prime}=x+y^{2}, y(0)=1$ Runge Kutta method of order 4 is used to find an approximate value of y at $x=0.1$ using steplength $h=0.1$. The following values of k^{\prime} s are computed $k_{1}=0.10000, k_{2}=$ 0.1152 . Compute $y(0.1)$.
3. Given $y^{\prime}=x-y^{2}$ and the follwing values of x and y

x	0.0	0.2	0.4	0.6
y	0.0000	0.0200	0.0795	0.1762

Apply Milnes Predictor. Corrector method to find the solution at $x=0.8$
4. Given $y^{\prime}=\frac{1}{2} x y$ and the following values of x and y

x	0.0	0.1	0.2	0.3
y	1.0000	1.0025	1.0101	1.0228

Determine $y(0.4)$ usin Adams Bashforth formula. Improve the solution using Adam-Moulton formula.
5. Given $y^{\prime \prime}=x^{3} y^{\prime}+y, y(0)=1, y^{\prime}(0)=1 / 2$. Write down the equivalent set of two first order equations. Apply Taylor series method of order 3, to detemine y at $x=0.2$ using $h=0.2$.
6. Apply Dalquist method $y^{\prime \prime}-y=x, y(0)=1, y^{\prime}(0)=2, h=0.1$ to detemine $y(0.2)$.
7. Give $y^{\prime}=3 x+0.5, y(0)=1.0$, find $y(0.1)$ using Taylor series of order 4 with $h=0.1$.
8. Apply RK method of order 2 to evaluate $y(0.5)$ given $y^{\prime}=x+y^{2}, y(0)=1.0$ taking $h=0.5$.
9. Given $5 x y^{\prime}+y^{2}-2=0, y(4.0)=1.0, y(4.1)=1.009, y(4.2)=1.0097, y(4.3) 1.0143$. Apply Milnes Predictor formula to evaluate $y(4.4)$.
10. Given $y^{\prime \prime}=x y, y(0)=0, y^{\prime}(0)=1.0$. Reduce the equation to a system of first order initial value problems.

